All about Genetics
All about Genetics

Lister Hill National Center for Biomedical Communications, U.S. National Library of Medicine National Institutes of Health, Department of Health & Human Services Published July 16, 2019. 


What is genetic testing?

Genetic testing is a type of medical test that identifies changes in chromosomes, genes, or proteins. The results of a genetic test can confirm or rule out a suspected genetic condition or help determine a person’s chance of developing or passing on a genetic disorder. More than 1,000 genetic tests are currently in use, and more are being developed.

Several methods can be used for genetic testing:

  • Molecular genetic tests (or gene tests) study single genes or short lengths of DNA to identify variations or mutations that lead to a genetic disorder.
  • Chromosomal genetic tests analyze whole chromosomes or long lengths of DNA to see if there are large genetic changes, such as an extra copy of a chromosome, that cause a genetic condition.
  • Biochemical genetic tests study the amount or activity level of proteins; abnormalities in either can indicate changes to the DNA that result in a genetic disorder.

Genetic testing is voluntary. Because testing has benefits as well as limitations and risks, the decision about whether to be tested is a personal and complex one. A geneticist or genetic counselor can help by providing information about the pros and cons of the test and discussing the social and emotional aspects of testing.

What are the types of genetic tests?

Genetic testing can provide information about a person's genes and chromosomes. Available types of testing include:

Newborn screening

Newborn screening is used just after birth to identify genetic disorders that can be treated early in life. Millions of babies are tested each year in the United States. All states currently test infants for phenylketonuria (a genetic disorder that causes intellectual disability if left untreated) and congenital hypothyroidism (a disorder of the thyroid gland). Most states also test for other genetic disorders.

Diagnostic testing

Diagnostic testing is used to identify or rule out a specific genetic or chromosomal condition. In many cases, genetic testing is used to confirm a diagnosis when a particular condition is suspected based on physical signs and symptoms. Diagnostic testing can be performed before birth or at any time during a person's life, but is not available for all genes or all genetic conditions. The results of a diagnostic test can influence a person's choices about health care and the management of the disorder.

Carrier testing

Carrier testing is used to identify people who carry one copy of a gene mutation that, when present in two copies, causes a genetic disorder. This type of testing is offered to individuals who have a family history of a genetic disorder and to people in certain ethnic groups with an increased risk of specific genetic conditions. If both parents are tested, the test can provide information about a couple's risk of having a child with a genetic condition.

Prenatal testing

Prenatal testing is used to detect changes in a fetus's genes or chromosomes before birth. This type of testing is offered during pregnancy if there is an increased risk that the baby will have a genetic or chromosomal disorder. In some cases, prenatal testing can lessen a couple's uncertainty or help them make decisions about a pregnancy. It cannot identify all possible inherited disorders and birth defects, however.

Preimplantation testing

Preimplantation testing, also called preimplantation genetic diagnosis (PGD), is a specialized technique that can reduce the risk of having a child with a particular genetic or chromosomal disorder. It is used to detect genetic changes in embryos that were created using assisted reproductive techniques such as in-vitro fertilization. In-vitro fertilization involves removing egg cells from a woman’s ovaries and fertilizing them with sperm cells outside the body. To perform preimplantation testing, a small number of cells are taken from these embryos and tested for certain

genetic changes. Only embryos without these changes are implanted in the uterus to initiate a pregnancy.

Predictive and presymptomatic testing

Predictive and presymptomatic types of testing are used to detect gene mutations associated with disorders that appear after birth, often later in life. These tests can be helpful to people who have a family member with a genetic disorder, but who have no features of the disorder themselves at the time of testing. Predictive testing can identify mutations that increase a person's risk of developing disorders with a genetic basis, such as certain types of cancer. Presymptomatic testing can determine whether a person will develop a genetic disorder, such as hereditary hemochromatosis (an iron overload disorder), before any signs or symptoms appear. The results of predictive and presymptomatic testing can provide information about

a person’s risk of developing a specific disorder and help with making decisions about medical care.

Forensic testing

Forensic testing uses DNA sequences to identify an individual for legal purposes. Unlike the tests described above, forensic testing is not used to detect gene mutations associated with disease. This type of testing can identify crime or catastrophe victims, rule out or implicate a crime suspect, or establish biological relationships between people (for example, paternity).

How is genetic testing done?

Once a person decides to proceed with genetic testing, a medical geneticist, primary care doctor, specialist, or nurse practitioner can order the test. Genetic testing is often done as part of a genetic consultation.

Genetic tests are performed on a sample of blood, hair, skin, amniotic fluid (the fluid that surrounds a fetus during pregnancy), or other tissue. For example, a procedure called a buccal smear uses a small brush or cotton swab to collect

a sample of cells from the inside surface of the cheek. The sample is sent to a laboratory where technicians look for specific changes in chromosomes, DNA, or proteins, depending on the suspected disorder. The laboratory reports the test results in writing to a person's doctor or genetic counselor, or directly to the patient if requested.

Newborn screening tests are done on a small blood sample, which is taken by pricking the baby's heel. Unlike other types of genetic testing, a parent will usually only receive the result if it is positive. If the test result is positive, additional testing is needed to determine whether the baby has a genetic disorder.

Before a person has a genetic test, it is important that he or she understands the testing procedure, the benefits and limitations of the test, and the possible consequences of the test results. The process of educating a person about the test and obtaining permission is called informed consent on page 9.


What is informed consent?

Before a person has a genetic test, it is important that he or she fully understands the testing procedure, the benefits and limitations of the test, and the possible consequences of the test results. The process of educating a person about the test and obtaining permission to carry out testing is called informed consent. "Informed" means that the person has enough information to make an educated decision about testing; "consent" refers to a person's voluntary agreement to have the test done.

In general, informed consent can only be given by adults who are competent to make medical decisions for themselves. For children and others who are unable to make their own medical decisions (such as people with impaired mental status), informed consent can be given by a parent, guardian, or other person legally responsible for making decisions on that person's behalf.

Informed consent for genetic testing is generally obtained by a doctor or genetic counselor during an office visit. The healthcare provider will discuss the test and answer any questions. If the person wishes to have the test, he or she will then usually read and sign a consent form.

Several factors are commonly included on an informed consent form:

A general description of the test, including the purpose of the test and the condition for which the testing is being performed.

How the test will be carried out on page 8 (for example, a blood sample).

What the test results mean on page 13, including positive and negative results, and the potential for uninformative results or incorrect results such as false positives or false negatives.

Any physical or emotional risks associated with the test on page 18.

Whether the results can be used for research purposes on page 22.

Whether the results might provide information about other family members' health, including the risk of developing a particular condition or the possibility of having affected children.

How and to whom test results will be reported and under what circumstances results can be disclosed (for example, to health insurance providers).

What will happen to the test specimen after the test is complete.

Acknowledgment that the person requesting testing has had the opportunity to discuss the test with a healthcare professional.

The individual's signature, and possibly that of a witness.

The elements of informed consent may vary, because some states have laws that specify factors that must be included. (For example, some states require disclosure that the test specimen will be destroyed within a certain period of time after the test is complete.)

Informed consent is not a contract, so a person can change his or her mind at any time after giving initial consent. A person may choose not to go through with genetic testing even after the test sample has been collected. A person simply needs to notify the healthcare provider if he or she decides not to continue with the testing process.

What do the results of genetic tests mean?

The results of genetic tests are not always straightforward, which often makes them challenging to interpret and explain. Therefore, it is important for patients and their families to ask questions about the potential meaning of genetic test results both before and after the test are performed. When interpreting test results, healthcare professionals consider a person’s medical history, family history, and the type of genetic test that was done.

A positive test result means that the laboratory found a change in a particular gene, chromosome, or protein of interest. Depending on the purpose of the test, this result may confirm a diagnosis; indicate that a person is a carrier

of a particular genetic mutation, identify an increased risk of developing a disease (such as cancer) in the future, or suggest a need for further testing. Because family members have some genetic material in common, a positive test result may also have implications for certain blood relatives of the person undergoing testing. It is important to note that a positive result of a predictive or

presymptomatic genetic test usually cannot establish the exact risk of developing a disorder. Also, health professionals typically cannot use a positive test result to predict the course or severity of a condition.

A negative test result means that the laboratory did not find a change in the gene, chromosome, or protein under consideration. This result can indicate that a person is not affected by a particular disorder, is not a carrier of a specific genetic mutation, or does not have an increased risk of developing a certain disease. It is possible, however, that the test missed a disease-causing genetic alteration because many tests cannot detect all genetic changes that can cause a particular disorder. Further testing may be required to confirm a negative result.

In some cases, a test result might not give any useful information. This type of result is called uninformative, indeterminate, inconclusive, or ambiguous. Uninformative test results sometimes occur because everyone has common, natural variations in their DNA, called polymorphisms, that do not affect health. If a genetic test finds a change in DNA that has not been associated with a disorder in other people, it can be difficult to tell whether it is a natural polymorphism or a disease-causing mutation. An uninformative result cannot

confirm or rule out a specific diagnosis, and it cannot indicate whether a person has an increased risk of developing a disorder. In some cases, testing other affected and unaffected family members can help clarify this type of result.


What are the benefits of genetic testing?

Genetic testing has potential benefits whether the results are positive or negative for a gene mutation. Test results can provide a sense of relief from uncertainty and help people make informed decisions about managing their health care. For example, a negative result can eliminate the need for unnecessary checkups and screening tests in some cases. A positive result can direct a person toward available prevention, monitoring, and treatment options. Some test results can also help people make decisions about having children. Newborn screening can identify genetic disorders early in life so treatment can be started as early as possible.


What are the risks and limitations of genetic testing?

The physical risks associated with most genetic tests are very small, particularly for those tests that require only a blood sample or buccal smear (a method that samples cells from the inside surface of the cheek). The procedures used for prenatal testing carry a small but real risk of losing the pregnancy (miscarriage) because they require a sample of amniotic fluid or tissue from around the fetus.

Many of the risks associated with genetic testing involve the emotional, social, or financial consequences of the test results. People may feel angry, depressed, anxious, or guilty about their results. In some cases, genetic testing creates tension within a family because the results can reveal information about other

family members in addition to the person who is tested. The possibility of genetic discrimination in employment or insurance is also a concern. (Refer to What is genetic discrimination? on page 19 for additional information.)

Genetic testing can provide only limited information about an inherited condition. The test often can't determine if a person will show symptoms of a disorder, how severe the symptoms will be, or whether the disorder will progress over

time. Another major limitation is the lack of treatment strategies for many genetic disorders once they are diagnosed.

A genetics professional can explain in detail the benefits, risks, and limitations of a particular test. It is important that any person who is considering genetic testing understand and weigh these factors before making a decision.


What is genetic discrimination?

Genetic discrimination occurs when people are treated differently by their employer or insurance company because they have a gene mutation that causes or increases the risk of an inherited disorder. Fear of discrimination is a common concern among people considering genetic testing.

Several laws at the federal and state levels help protect people against genetic discrimination. In particular, a federal law called the Genetic Information Nondiscrimination Act (GINA) is designed to protect people from this form of discrimination.

GINA has two parts: Title I, which prohibits genetic discrimination in health insurance, and Title II, which prohibits genetic discrimination in employment. Title I makes it illegal for health insurance providers to use or require genetic information to make decisions about a person's insurance eligibility or coverage. This part of the law went into effect on May 21, 2009. Title II makes it illegal for employers to use a person's genetic information when making decisions about hiring, promotion, and several other terms of employment. This part of the law went into effect on November 21, 2009.

GINA and other laws do not protect people from genetic discrimination in  every circumstance. For example, GINA does not apply when an employer has fewer than 15 employees. It does not cover people in the U.S. military or those receiving health benefits through the Veterans Health Administration or Indian Health Service. GINA also does not protect against genetic discrimination in forms of insurance other than health insurance, such as life, disability, or long- term care insurance.


Can genes be patented?

A gene patent is the exclusive rights to a specific sequence of DNA (a gene) given by a government to the individual, organization, or corporation who claims to have first identified the gene. Once granted a gene patent, the holder of the patent dictates how the gene can be used, in both commercial settings, such as clinical genetic testing, and in noncommercial settings, including research, for 20 years from the date of the patent. Gene patents have often resulted in companies having sole ownership of genetic testing for patented genes.

On June 13, 2013, in the case of the Association for Molecular Pathology v. Myriad Genetics, Inc., the Supreme Court of the United States ruled that human genes cannot be patented in the U.S. because DNA is a "product of nature." The Court decided that because nothing new is created when discovering a gene, there is no intellectual property to protect, so patents cannot be granted. Prior to this ruling, more than 4,300 human genes were patented. The Supreme

Court's decision invalidated those gene patents, making the genes accessible for research and for commercial genetic testing.

The Supreme Court's ruling did allow that DNA manipulated in a lab is eligible to be patented because DNA sequences altered by humans are not found in nature. The Court specifically mentioned the ability to patent a type of DNA known as complementary DNA (cDNA). This synthetic DNA is produced from the molecule that serves as the instructions for making proteins (called messenger RNA).


How does genetic testing in a research setting differ from clinical genetic testing?

The main differences between clinical genetic testing and research testing are the purpose of the test and who receives the results. The goals of research testing include finding unknown genes, learning how genes work, developing tests for future clinical use, and advancing our understanding of genetic conditions. The results of testing done as part of a research study are usually not available to patients or their healthcare providers. Clinical testing, on the other hand, is done to find out about an inherited disorder in an individual patient or family. People receive the results of a clinical test and can use them to help them make decisions about medical care or reproductive issues.

It is important for people considering genetic testing to know whether the test is available on a clinical or research basis. Clinical and research testing both involve a process of informed consent on page 9 in which patients learn

about the testing procedure, the risks and benefits of the test, and the potential consequences of testing.